聚上美聚上美

分享生活见闻
领略世界奇闻怪事、体验民间趣事

世界上最诡异的悖论 世界上最诡异的悖论是什么

关于世界上最诡异的悖论✅的问题,下面有几个最新世界上最诡异的悖论是什么的观点,这里聚上美网站生活见闻小编希望能帮您找到想要的世界上最诡异的悖论答案,了解更多世界上都有哪些著名的悖论的相关详细知识。
相关世界上最诡异的悖论的扩展:
世界上都有哪些著名的悖论 芝诺悖论: 阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),他永远也追不上这只乌龟.理由如下:他要追上乌龟必须要经过乌龟出发的地方A,但当他追到这个地方的时候,乌龟又向前爬了一段距离,到了B点,他要追上乌龟又必须经过B点,但当他追到B点的时候,乌龟又爬到了C点.所以阿基里斯永远也追不上乌龟! 亚基里斯和乌龟 一日亚基里斯和乌龟来一次赛跑,因为亚基里斯认为自己比乌龟快,所以他让乌龟少跑一段距离。他们的协议是亚基里斯会在某地点d 1开始起跑,而乌龟则会以较接近终点的地方d 2为起点。但试想想,当亚基里斯跑到d 2的时候,乌龟会跑到了另一地方d 3。亚基里斯追到d 3的时候,乌龟却已到了d 4。如此类推,每次亚基里斯跑到乌龟之前到过的地方,乌龟却已再向前跑了一段距离。这样看来,亚基里斯怎能追到乌龟呢? 沙丘悖论 沙粒堆在一起,聚少成多,堆成沙丘。例如十万粒沙堆在一起就成了沙丘。沙丘这样大,若随便拿走一粒沙,沙丘仍会存在,因为一粒沙实在微不足道。同样,从九万九千九百九十九粒沙组成的沙丘再拿走一粒沙,沙丘也不会因此消失。总而言之,从一个沙丘拿走一粒沙,沙丘会继续存在。但若真的如此,连续把沙粒一粒一粒拿走,直至剩下最后一粒沙,沙丘也继续存在。但一粒沙怎可以构成一个沙丘呢? 不自称的悖论 如果一个谓词不能应用于它自己身上,我们称之为「不自称」的。反之,我们则称为「自称」。例如,「由中文字所组成的」这个谓词便正是由中文字所组成,所以是个自称的谓词。「是个红色的水果」只可以形容水果,不可以形容自己,所以不自称。 那么「是不自称的」本身是不是不自称的?如果是,它不应用于自己身上,即是说它应用于自己身上。但如果不是,它应用于自己身上,亦即是说它不应用于自己身上。换言之,如果它应用于自己身上,它就不应用于自己身上了! 律师和徒弟 学生甲是某大律师的徒弟。当他还在受训的时候,他答应老师,说会在他完成训练、打胜了第一场官司后缴交学费。但毕业后学生甲却一直不接手任何官司,于是老师便决定控告他拖欠学费。 老师的论据是,如果老师自己打胜了这场官司,学生甲必要立即缴交学费;如果是学生甲打胜,甲便应该按照原本的协议缴交学费。所以无论如何学生都应交学费。 但甲的论据是,如果法庭判他胜利,他便不需缴交学费;如果是老师胜利,他自己便从来没有打胜过,所以根据协议他也不需缴交学费。 到底谁的论据有道理? 说谎的人 有人这样说:「我现在所讲这句话是假的。」 那么,这个人所讲的到底是真或是假的呢?若他所说的是真,则他便是在讲假话,亦即他所说的是假的了。但若他所说的是假,那么他说自己在讲假话,岂非正确?但一句说话又怎可能是既真又假的呢?也许有些人会认为他那句话既不真也不假,但如果他所讲的其实是不真不假,而他却说自己在讲假话,那么他不真的是在讲假话吗? 纽康姆悖论 试想想,在你面前有两个盒子,一个是透明的,有一万元在里头,另一个是不透光的,可能有一百万元在里头,也可能没有任何金钱。你有两个选择:你可以拿走不透明的盒子,又或两个盒子都拿走,而你拿的盒子里的所有钞票都是你的。 不过,有一个非常准确(接近100%准确)的预言家会在场预测你的选择。在你作出决定之前,他会先预测你的选择。如果他算出你会只拿走不透明盒子,他便会放一百万元进这个盒子。若他认为你会拿走两个盒子的话,他便会给你一个空的不透明盒子。 现在,他已作出了他的预测,安排了适当的盒子。从你的角度来看,不透明的盒子内有没有钞票,已成定局。拿走两个盒子,照道理会比拿一个得到多一万元。但绝大部份决定拿走两个盒子的人,却只得一万元,而非一百零一万元。你认为应如何理性地选择? 囚犯的两难 假设你和我犯了法,一起被收在监里,根据我们的律师: 如果我们一个人认罪一个人不认罪,认罪的那个便会获得释放,不认罪的就会被判监十年。 如果我们都认罪,每人都会囚七年。 如果我们都不认罪,就只会被判一年监。 假设我们两人都十分精明,亦觉得徒刑越短越好。现在,我和你被分开,无法沟通,各自要决定是否认罪。 我不知道你是否会认罪。不过若你认罪,我也应该认罪,因为这样便只会判监七年而非十年。如果你不认罪,我更应认罪,因为这样我便会获得释放。所以无论如何我都应该认罪。 但若你也这样推论,最后决定认罪,我们便要被判囚七年了。这比起两人都不认罪,判一年监,实在差得多了。何以理性的推论,引至这样的后果呢? 罗素悖论 我们惯常将东西、人物分入不同集合。例如2、16等便是双数集合的一份子。但大多数的集合本身并不是该集合的份子。双数集合内含2、16等数目,但集合本身并非一个双数,所以它不是自己的份子,正如几个国家所组成的联盟本身并不是一个国家一样。但「不是动物」所指的集合却是自己的一份子,因为集合包含铅笔、树等东西,那它自己自然不是动物。 好了,那么「不是自己份子」所指的集合,是否自己的份子? 突如其来的测验 突击测验究竟是否可能?有一个老师告诉她的学生,下星期会有突击测验。她 的学生推断,测验的日期必不会是在星期五,因为如果到星期四测验还没有举行的话,那么所有学生都会知道测验会在星期五发生,所以这个测验也不能算是突击测验了。既然剔除了测验在星期五举行的可能性,以同样的理由,突击测验也不可能在星期四发生。如此类推,突击测验根本不可能。但到了下星期一,老师却真的来一个突击测验,所有学生都很惊讶,他们的推论那里出了问题? 剪自己的头发理发师 在某一个村庄有一个理发师,他只会替不会给自己剪发的人剪发。那么你说,他会不会剪自己的头发? 世上没有全能的上帝 照道理,「全能」是指有能力做到任何可能做到的事情。那么,一个全能的上帝能否造出一块?自己不能举起的石头?如果可以,那便有一件事是上帝做不到的了,就是举起?自己创造的那块石头。如果上帝造不到这样的一块石头,那上帝也不是全能的了,因为造一块自己举不起的石头,我们也可以做到。所以,世上没有全能的上帝。
世界十大著名悖论,你听说过几个?

世界十大著名悖论,你听说过几个?

​悖论,指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确所致。 这里搜集了一些在思想史上比较著名的十大悖论,供读者思考。

(一)电车难题(The Trolley Problem)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图1)

“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?

电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。

(二)空地上的奶牛(The Cow in the field)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图2)

认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?

空地上的奶牛最初是被Edmund Gettier用来批判主流上作为知识的定义的JTB(justified true belief)理论,即当人们相信一件事时,它就成为了知识;这件事在事实上是真的,并且人们有可以验证的理由相信它。在这个实验中,农民相信奶牛在空地上,且被送奶工的证词和他自己对于空地上的黑白相间物的观察所证实。而且经过送奶工后来的证实,这件事也是真实的。尽管如此,农民并没有真正的知道奶牛在那儿,因为他认为奶牛在那儿的推导是建立在错误的前提上的。Gettier利用这个实验和其他一些例子,解释了将知识定义为JTB的理论需要修正。

(三)定时炸弹(The Ticking Time Bomb)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图3)

如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报?

与电车难题类似,定时炸弹情景也是强迫一个人从两个不道德行径中选择的伦理问题。它一般被用作对那些说在任何情况下都不能使用酷刑的反驳。它也被用作在极端形势下法律——就像美国的严禁虐囚的法律——可以被放在第二位的例子。归功于像《24小时》的电视节目和各种政治辩论,定时炸弹情景已成为最常引用的思想实验之一。今年早些时候,一份英国报纸提出了更为极端的看法。这份报纸提议说,如果那个恐怖分子对酷刑毫无反应,那么当局者是否愿意拷打他的妻子儿女来获取情报。

世界上最诡异的悖论 世界上最诡异的悖论是什么(图4)

有一个现实生活中的真实的故事:

一个朋友是相当一级的领导。一次他办理一个绑架小女孩的案件,罪犯送来小女孩的手指勒索钱财——影视剧中常见的情节。不过下面的故事却很不常见。罪犯约定了无论钱是不是到手都要撕票,罪犯A去取钱,如果罪犯A在22时不回来集合,其他罪犯就撕票潜逃。

朋友只好把A抓回来——让他拿钱回去就等于害死了小女孩。问题是时间紧迫,A这小子是知道一点法律的,他认定说不说都是死刑,不如不说,说不定找不到证据,还能留条活路。所以审讯室里出现了奇怪的场景:审讯员手脚冰凉、头顶冒汗,罪犯却神态自若,从容以对,时不时地露出狰狞的奸笑。

时间在流逝,每一秒钟都生死攸关。当断不断,必受其乱。朋友打法其他人离开,独自负责审讯,并且声明有其个人对结果负责。

朋友拎出一把菜刀,按住A的一个手指,微笑着说:“我只问你一遍:小女孩关在哪里?”

A显然对这种威胁不屑一顾:“我真的不知道你问什么。”

咔嚓一声,手起刀落,一根手指掉在地上。

在A的鬼嚎声中,朋友按住他的另一根手指,仍然微笑着说:“我只问你一遍:小女孩关在哪里?”

A这一次没有回答。

咔嚓一声,手起刀落,地上现在有了两根手指。

没有等到朋友按住他的第三根手指,A交代了小女孩关押的位置。

小女孩解救出来以后,朋友用一个塑料袋装着菜刀和手指,到检察院投案自首:“我刑讯逼供,我来投案自首。”

事情的发展更加富有戏剧性。朋友的行为显然违法,显然构成犯罪,但是检察院就是不立案,说这行为有紧急避险的性质,最终定性还要研究,就是不给文字结论。公安局也不给他停职,说这是检察院的事儿,检察院没有结论,我们不好说什么。法院不闻不问,检察院没有起诉,我们根本不知道。就连无孔不入的律师也对这事儿只字不提,甚至A自己都认为这是合理的,既然没人提,他干脆就不承认被人剁了手指,法庭上他说他因为干了这事儿后悔,自己剁的。甚至恬不知耻地说是他主动交代小孩的关押地点,主动配合公安解救了小女孩,有重大立功表现,要求给条生路。

生路是没有,A很快就毙了。朋友的行为成了我们酒后谈论的英雄壮举,朋友自己的话,是这个故事最好的注脚:“即使是法律,也不能蒙蔽我的良心。”

我们不反对罗尔斯,也很欣赏程序正义。我们自愿遵守法律程序,我们对正当的程序表示真心的尊重,但是,指导我们行动的,永远是心灵深处的道德法则!当程序正义或者其他任何正义与我们心灵深处的道德法则发生冲突时,我们毫不犹豫地捍卫道德的尊严;同时,一个理性的人不应当伤害程序的正义,我的朋友和苏格拉底一起做出了表率:我不逃避、不隐瞒、不后悔、不改变,我自愿接受程序的处罚。我用行动维护道德的尊严,同时甘愿用一个人的苦难维护程序的尊严。

(四)爱因斯坦的光线(Einstein’s Light Beam)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图5)

爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。

事实上,没人确切知道这意味着什么。科学家一直都在争论一个如此简单的思想实验是如此帮助爱因斯坦完成到狭义相对论这如此巨大的飞跃的。在当时,这个实验中的想法与现在已被抛弃的“以太”理论相违背。但他经过了好多年才证明了自己是正确的。

假如爱因斯坦以光速旅行,他会看到什么呢?

他什么都看不见。因为这时候根本就没有时间——时间不再流动。他的手表、电子钟、机械中一起停止运转,不是因为出了故障,而是时间在这里静止了。爱因斯坦的一根头发变得比泰山重得多。不过也不用过于担心,一根头发想压死爱因斯坦也做不到——压死他需要时间,但是这里没有时间。我们站在地球上看着爱因斯坦以光速旅行一年,但是爱因斯坦却没有经历这一年,开始和结束都在同一时刻,这中间时间丝毫没有流动,丝毫没有变化;这中间没有发生任何事,没有任何运动和变化,他当然也不曾在这期间“看见”任何东西。

(五)特修斯之船(The Ship of Theseus)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图6)

最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?

对于哲学家,特修斯之船被用来研究身份的本质。特别是讨论一个物体是否仅仅等于其组成部件之和。一个更现代的例子就是一个不断发展的乐队,直到某一阶段乐队成员中没有任何一个原始成员。这个问题可以应用于各个领域。对于企业,在不断并购和更换东家后仍然保持原来的名字。对于人体,人体不间断的进行着新陈代谢和自我修复。这个实验的核心思想在于强迫人们去反思身份仅仅局限在实际物体和现象中这一常识。

(六)伽利略的重力实验(Galieo's Gravity E)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图7)

为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。

(七)猴子和打字机(Monkeys and Typewriters)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图8)

另一个在流行文化中占了很大分量的思想实验是“无限猴子定理”,也叫做“猴子和打字机”实验。定理的内容是,如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。

简单来说,“猴子和打字机”定理是用来描述无限的本质的最好方法之一。人的大脑很难想象无限的空间和无限的时间,无限猴子定理可以帮助理解这些概念可以达到的宽度。猴子能碰巧写出《哈姆雷特》这看上去似乎是违反直觉,但实际上在数学上是可以证明的。

这个定理本身在现实生活中是不可能重现的,但这并没有阻止某些人的尝试:2003年,一家英国动物园的科学家们“试验”了无限猴子定理,他们把一台电脑和一个键盘放进灵长类园区。可惜的是,猴子们并没有打出什么十四行诗。根据研究者,它们只打出了5页几乎完全是字母“s”的纸。

不需要无限多个猴子,不需要无限长的时间,房间里放一台打字机,然后关一只猴子进去,猴子碰巧也会跳到打字机上,碰巧也会打出几个字母,有人计算过,假以2000亿年,从概率上讲,猴子会打出一首莎士比亚的十四行诗。

(八)中文房间(The Chinese Room)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图9)

“中文房间”最早由美国哲学家John Searle于20世纪80年代初提出。这个实验要求你想象一位只说英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸、铅笔和橱柜。写着中文的纸片通过小窗口被送入房间中。房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。

Searle创造了“中文房间”思想实验来反驳电脑和其他人工智能能够真正思考的观点。房间里的人不会说中文;他不能够用中文思考。但因为他拥有某些特定的工具,他甚至可以让以中文为母语的人以为他能流利的说中文。Searle认为,电脑就是这样工作的。它们无法真正的理解接收到的信息,但它们可以运行一个程序,处理信息,然后给出一个智能的印象。

机器可以有思想吗?这是一个老的不能再老的问题。图灵问:“有思想”是什么意思?我说它有思想,你不承认怎么办?我们怎么判断一台机器是不是有思想?

于是图灵设计了一个“图灵测试”,图灵认为这是一个可操作的标准——如果机器通过了这个测试,我们就应当承认它有思想。

图灵测试是这样的:把一个等待测试的计算机和一个思维正常的人分别关在两间屋子里,然后让你提问题,你通过提问,通过分析机器和人对你的问题的回答来想办法区分哪一个是机器,哪一个是人。如果你无法区分,那么,这台机器就通过了测试,就证明这台机器和人一样具有思维,有思想——这是一台会思考的机器。

Searle用中文房间这个思想试验反击图灵——事实上这确实彻底击溃了图灵。

中文房间应当这样说才是正确的:一个不懂中文的人(西方人认为中文就像天书一样难以理解,如果他认为你的话难以理解,就会说:你说的简直就是中文!)被关在一间封闭的屋子里,屋里有一个完整的中文对照表——任何一个中文句子都对应一个其他的句子,事实上对应的那个句子是前一个句子的答案。你可以用中文向这个人提问,问题写在一张纸条上传给这个人,这个人只要查找对照表,找到对应的中文句子传出来就行了。那么,这个完全不懂中文的人,确实像一个精通中文的一样回答一切中文问题,但是他丝毫不“知道”任何一句话的意思。

在此基础上,有人提出了更强烈的反击:把爱因斯坦对任何一个问题的回答汇编成一本书,那么你拿任何一个问题去问爱因斯坦,与翻着本书会得到同样的答案,现在我们能说这本书像爱因斯坦一样会思考吗?

(九)薛定锷的猫(Schrodinger’s Cat)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图10)

薛定锷的猫最早由物理学家薛定锷提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因为这件事会否发生的概率相等,薛定锷认为在盒子被打开前,盒子中的猫被认为是既死又活的。

简而言之,这个实验的核心思想是因为事件发生时不存在观察者,盒子里的猫同时存在在其所有可能的状态中(既死又活)。薛定锷最早提出这个实验是在回复一篇讨论量子态叠加的文章时。薛定锷的猫同时也说明了量子力学的理论是多么令人无法理解。这个思想实验因其复杂性而臭名昭著,同时也启发了各种各样的解释。其中最奇异的就属“多重世界”假说,这个假说表示有一只死猫和一只活猫,两只猫存在在不同的宇宙之中,并且永远不会有交集。

(十)缸中的大脑(Brain in a Vat)

世界上最诡异的悖论 世界上最诡异的悖论是什么(图11)

这个思想实验涵盖了从认知学到哲学到流行文化等各个领域。这个实验的内容是:想象有一个疯狂科学家把你的大脑从你的体内取出,放在某种生命维持液体中。大脑上插着电极,电极连到一台能产生图像和感官信号的电脑上。因为你获取的所有关于这个世界的信息都是通过你的大脑来处理的,这台电脑就有能力模拟你的日常体验。如果这确实可能的话,你要如何来证明你周围的世界是真实的,而不是由一台电脑产生的某种模拟环境?

今天世界上最诡异的悖论的内容先分享到这里了,读完本文后,是否找到相关世界上最诡异的悖论是什么的答案,想了解更多,请关注yfnsxy.cn聚上美世界奇闻怪事网站。

【版权声明】:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请联系首页【QQ秒回】 举报,一经查实,本站将立刻删除。 转载请说明来源于"聚上美",本文地址:https://yfnsxy.cn/shjw/57967.html

未经允许不得转载:聚上美 » 世界上最诡异的悖论 世界上最诡异的悖论是什么