聚上美聚上美

分享生活见闻
领略世界奇闻怪事、体验民间趣事

量子力学入门 量子力学入门书籍

关于量子力学入门✅的问题,下面有几个最新量子力学入门书籍的观点,这里聚上美网站生活见闻小编希望能帮您找到想要的量子力学入门答案,了解更多量子力学应该从何学起?的相关详细知识。
相关量子力学入门的扩展:
量子力学应该从何学起? 看你的水平了。如果你不是物理专业的,那就从微积分和线性代数学起。微积分不学没办法学物理。最基本的数学工具。线性代数是狄拉克矩阵力学的数学工具。广泛用到,尤其是线性空间和特征值的概念。 也许数理方程会用得到,尤其是在解氢原子的时候。物理方面: 需要学一下普通力学。如果不懂牛顿三定律就想学量子力学就像不会爬就像跑一样。 一些经典力学的知识是必要的。你需要对哈密顿力学和拉格朗日力学比较懂。如果涉及到电磁场中的粒子运动问题,你还要学一下电磁学,电动力学。
快速入门量子力学,看这篇就够啦!

原创: Marianne 中科院物理所

作者:Marianne Freiberger

翻译:可乐不加冰

审校:Aprilis

如果问20世纪物理学最伟大的成就有哪些,量子力学可以毫无争议地进入榜单。然而,它反直觉的结论和晦涩的数学表达使得人们对它望而生畏。

著名物理学家理查德·费曼曾经说过:“我想我可以肯定地说,没人真正理解量子力学。”今天,笔者将从一个比较浅显的角度,带大家走进量子力学的大门,了解一些量子力学的基本概念和结论。

量子力学入门 量子力学入门书籍(图1)

理查德·费曼

说起量子力学,不得不提波动力学的创始人薛定谔。在法国物理学家德布罗意物质波理论的基础上,薛定谔创立了波动力学理论。它和海森堡的矩阵力学等价,是量子力学的两种表现形式。

1905年,爱因斯坦曾经提出光在某些情况下也可以表现得和粒子一样,而在其它情况下则依然表现出波动性,这就是光的波粒二象性。受此启发,德布罗意认为,其它常见的粒子,如电子、原子、分子等也可以表现出波粒二象性,它们对应的波被称作物质波。

我们都知道,一般的机械波或者电磁波,都可以用数学来描述。我们用一个波动方程来描述某个波在空间和时间上的变化,而这个方程的解——波函数,则表示了每个时刻波的形状。

量子力学入门 量子力学入门书籍(图2)

一个常见的机械波

如果德布罗意的预言是正确的,那么对于那些物质波,也应该有相应的波动方程与之对应。薛定谔就提出了这样的一个波动方程,也就是大名鼎鼎的薛定谔方程。

量子力学入门 量子力学入门书籍(图3)

薛定谔方程

这个方程和普通的波动方程不大一样。你可能会问薛定谔是如何提出这个方程的,但费曼却认为这个问题是徒劳的:“我们可以从哪里得到薛定谔方程?不可能从你知道的任何东西中得到它。它来源于薛定谔的思想。”

薛定谔方程的解被称为波函数,它可以告诉我们关于正在考察的量子体系的一切。但是这个“一切”究竟包括什么?

举个例子,我们假设有一个粒子在一个封闭的盒子里运动,在给定的边界条件下求解这个系统的薛定谔方程,得到相应的波函数,这个波函数并没有告诉我们这个粒子在某个时间点所处的确切位置。当然,这并不奇怪,因为粒子也具有波动性,要说一个波存在于某一个确定的点、有一个确定的轨迹显然是不可能的。

那么这个波函数是描述出了一个波的形状吗?就像我们求解绳子上的波动方程可以知道每一刻绳子的形状一样?答案显然也并非如此。还是那句话,粒子具有波粒二象性,并不是纯粹的波动性。

那么这里究竟是怎么回事?

量子力学入门 量子力学入门书籍(图4)

氢原子电子的波函数和不同轨道的概率密度分布图

在我们继续往下讨论之前,请允许我向你保证,薛定谔方程绝对是历史上最成功的方程之一。它的预演已经得到了很多次的验证。所以尽管它看上去是那么的奇怪和陌生,人们依然承认它的正确性。

回到我们刚刚讨论的波函数,在任一时刻t,盒子内的任一位置x,波函数给你的是一个确定的数值,而且这个数通常是复数。这个数究竟意味着什么?1926年,物理学家马克斯·玻恩给出了解释:这个复数的模的平方,代表了t时刻你在x这点找到这个粒子的概率密度。

为什么会是概率?因为它是一个微观粒子,而不是一个宏观的台球,不遵循经典的物理定律,它的运动没有确定的轨迹。当我们打开盒子观测时,我们一定会在某一个点找到它,但我们无法预测这个点究竟在哪里,我们能知道的仅仅只有概率。

这便是量子力学第一个反直觉的结论:在这个世界的微观层面,并不像宏观层面那般“确定一定以及肯定”。

第二个反直觉的结论紧接着就来了。刚刚我们还说,如果打开盒子观察,我们总能在某个点找到那个粒子。那如果我们不打开盒子呢?这个粒子在哪里?答案就是这个粒子在波函数允许它存在的盒子里的任何地方。

量子力学入门 量子力学入门书籍(图5)

薛定谔和他那只最著名的“薛定谔的猫”

这并不是一个天方夜谭的脑洞,这个结论依然可以从薛定谔方程中得到。

假设你已经找到了一个波函数,它是这个薛定谔方程的解,并且描述了这个粒子可能存在于盒子中的某些位置。现在可能还有另一个波函数,它也是这个薛定谔方程的解,但它描述了这个粒子可能存在于盒子的其它位置。

如果你把这两个波函数做线性的叠加,你会发现叠加后的新波函数也是这个方程的解。这表示从某种意义上来说,这个粒子可能同时存在于这两个波函数所描述的位置——这就是所谓的量子叠加态。

当然,在现实中,但凡我们打开盒子观察,粒子只会在一个位置出现,叠加态会消失,没有人能同时在几个地方看到同一个粒子。为什么所谓的观察或是测量会导致叠加态的消失呢?这个问题至今还没有答案。

有人认为波函数在观察中通过某种机制坍缩到了某一个特定的状态,还有人认为现实世界在测量的那一刻分裂成了不同的分支,测量者只能看到众多可能的结果之一。总而言之,这个问题现在还没有定论。

从薛定谔方程中可以得到的结论不止于此。

另一个著名的结论就是海森堡不确定性原理。这个原理告诉我们,你永远不能同时测准一个粒子的位置和动量。

量子力学入门 量子力学入门书籍(图6)

海森堡不确定性原理

如果你位置测量得越精确,那么动量的误差范围就越大;如果你动量测量得越精确,那么位置的误差范围就越大。两者不确定度的乘积一定会大于某个确定的值。这并不是你测量工具不够先进导致了,这是量子力学薛定谔方程的必然结果。

除了位置和动量,时间和能量也是不能被同时精确测量的。这表示当时间的测量精度足够高时,能量将有很大很大的不确定范围,这便允许粒子在很短的时间内有一个很高的能量涨落,从而越过一些原本不能越过的势垒,实现隧穿,而这个能量似乎没有任何来源,看上去与经典的能量守恒相违背(事实上并不违背,感兴趣的读者可以自行查阅相关文献)。

除了最简单的单粒子系统,波函数还可以描述多粒子的体系。在这种情况下,波函数还能表现出一个奇异的性质——量子纠缠。

当多粒子体系的波函数不能分解为多个单粒子波函数的简单叠加时,粒子间会发生纠缠,一个粒子的状态改变会导致其它粒子的状态也随之改变,这种改变不受时间和空间的限制,被爱因斯坦称为“幽灵般的超距作用”。利用这种特性,量子保密通信成为了可能。

当然,量子力学的内容远远不止这些,上面提到的概念仅仅是冰山一角。想要系统的学习量子力学,还是需要借助数学的工具。本文只是简单介绍了量子力学中一些最基本的内容,帮助大家构建起关于量子力学的一个最基本的图像。不知道在笔者啰嗦这么多之后,你对量子力学的概念是更清楚了呢,还是更糊涂了呢?

原文链接:

https://plus.maths.org/content/ridiculously-brief-introduction-quantum-mechanics

今天量子力学入门的内容先分享到这里了,读完本文后,是否找到相关量子力学入门书籍的答案,想了解更多,请关注yfnsxy.cn聚上美世界奇闻怪事网站。

【版权声明】:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请联系首页【QQ秒回】 举报,一经查实,本站将立刻删除。 转载请说明来源于"聚上美",本文地址:https://yfnsxy.cn/sjqw/47798.html

未经允许不得转载:聚上美 » 量子力学入门 量子力学入门书籍